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Resumen 
 

Uno de los principales problemas que inquieta a las empresas dedicadas al curtido y 

adobo de cueros radica en las altas concentraciones contaminantes del efluente que 

liberan a la red de alcantarillado, los cuales sobrepasan los valores máximos admisibles 

(VMA) establecidos en el DS 010-2019-VIVIENDA. En línea con esta realidad, se 

presenta una alternativa para reducir la carga contaminante de Demanda Bioquímica de 

Oxígeno (DBO5), Demanda Química de Oxígeno (DQO) y Sólidos Suspendidos Totales 

(SST) presentes en las aguas de curtiduría a través del uso de un sistema de tratamiento 

de efluentes que es controlado por una red neuronal artificial que permite determinar de 

forma automática las  dosificaciones de insumos para el tratamiento de efluentes en 

curtiembres y dependiendo de la combinación de efluentes de los procesos de curtiduría 

se dosifican los insumos químicos. La metodología empleada consta de remoción de 

carga orgánica sedimentable a través de una trampa de grasa y poza de sedimentación, 

oxidación de sulfuro   materia orgánica, regulación de pH, coagulación y floculación de 
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acuerdo con la dosificación indicada en la red neuronal artificial. Con una muestra de 5 

m3/día, se logró reducir 70% los parámetros, obteniendo una concentración de DBO5, 

DQO y SST en torno a los 211.3 O2 mg/L, 790 mg/L y 109.7 mg/L respectivamente; en 

tanto se obtuvo 0.007 mg/L de cromo hexavalente, 0.005 mg/L de cianuro total, 1.9 mg/L 

de sólidos sedimentables, 6.5 mg/L de aceites y grasas y 740.9 mg/L de sulfatos; todo 

bajo el sistema de tratamiento validado a diferencia de las metodologías convencionales 

que solo tratan los efluentes por cada proceso por separado. 

 
Palabras claves: red neuronal artificial, tratamiento de efluentes, sistema piloto, 

demanda bioquímica de oxígeno, demanda química de oxígeno, sólidos suspendidos 
totales 
 
 

Abstract 

 

One of the main problems that concerns companies dedicated to leather tanning and 

dressing lies in the high contaminant concentrations of the effluent that they release into 

the sewage network, which exceed the maximum admissible values (VMA) established 

in DS 010-2019 -VIVIENDA.In line with this reality, an alternative is presented to reduce 

the contaminant load of Biochemical Oxygen Demand (BOD5), Chemical Oxygen 

Demand (COD) and Total Suspended Solids (TSS) present in tannery waters through the 

use of a effluent treatment system that is controlled by an artificial neural network that 

automatically determines the dosing of inputs for the treatment of effluents in tanneries 

and depending on the combination of effluents from the tannery processes, the chemical 

inputs are dosed.The methodology used consists of removal of sedimentable organic 

load through a grease trap and sedimentation pond, oxidation of sulfur organic matter, 

pH regulation, coagulation and flocculation according to the dosage indicated in the 

neural network and an aeration system. With a sample of 5 m3 / day, it was possible to 

reduce the parameters by 70%, obtaining a concentration of BOD5, COD and TSS around 

211.3 O2 mg / L, 790 mg / L and 109.7 mg / L respectively; meanwhile, 0.007 mg / L of 

hexavalent chromium, 0.005 mg / L of total cyanide, 1.9 mg / L of settleable solids, 6.5 

mg / L of oils and fats and 740.9 mg / L of sulfates were obtained; all under the validated 

treatment system unlike conventional methodologies that only treat the effluents for each 

process separately. 

 

 

Keywords: artificial neruonal network, effluent treatment, pilot system, biochemical 

oxygen demand, chemical oxygen demand, total suspended solids 
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Introducción 

Al cierre del año 2020 la industria del cuero a nivel regional congregó a un promedio de 

118 empresas activas según la Superintendencia Nacional de Aduanas y de 

Administración Tributaria, obteniendo un total de 550 empresas a nivel nacional. El 

problema identificado que limita la competitividad de las empresas dedicadas al curtido 

y adobo de cueros radica en la calidad del efluente que liberan a la red de alcantarillado 

por las altas concentraciones de contaminantes que posee, los cuales sobrepasan los 

VMA establecidos en el DS 010-2019-VIVIENDA, propiciando así el inicio de procesos 

sancionadores y multas con las autoridades fiscalizadoras de OEFA y SEDALIB. 

En la actualidad la técnica habitual se basa en  realizar tratamiento por separado 

para los efluentes de pelambre y curtido, iniciando con un tratamiento de retención de 

sólidos en combinación con la floculación y coagulación, utilizando 80 mg/l de sulfato de 

Aluminio y 4 mg/l de coagulante aniónicos; y sedimentación secundaria para remover los 

flóculos formados; usados para el tratamiento del efluente de pelambre. Para el curtido, 

una etapa de sedimentación primaria y antes de ser reciclado requiere de un 

acondicionamiento previo por la concentración de cromo y la acidez. Los desechos 

sólidos generados a partir del tratamiento primario del efluente de curtido, deben ser 

dispuestos en un relleno de seguridad, debido a su contenido de cromo. 

Se puede utilizar la coagulación y la floculación seguidas de un tratamiento 

biológico para tratar las aguas residuales de la curtiembre. El potasio de alumbre se usó 

para la coagulación y el Drewfloc 270 se usó para la floculación. Se concluyó que este 

método de tratamiento es exitoso en la reducción de la concentración de contaminantes 

de efluente de curtiembres para alcanzar los estándares nacionales de calidad ambiental 

(NEQS). (Shahid, M. et al 2017). 

En tal sentido, las RNA, pueden ser consideradas como un método de resolver 

problemas, de forma individual o combinada con otros métodos para tareas de 

clasificación, identificación, diagnóstico, optimización o predicción en las que el balance 

datos/conocimiento se inclina hacia los datos y donde, adicionalmente, puede existir la 

necesidad de aprendizaje en tiempo de ejecución y de cierta tolerancia a fallos. En estos 

casos las RNA se adaptan dinámicamente reajustando constantemente los “pesos” de 

sus interconexiones. Las RNA inspiran su comportamiento y/o funcionamiento en sus 

contrapartes biológicas. Donde, cada neurona por separado es una unidad capaz de 

procesar señales (impulsos) de manera individual. Sin embargo, al combinarse entre 

ellas formando redes de interconexiones, la capacidad de procesamiento y/o complejidad 

aumentan significativamente. La neurona, recibe impulsos externos, los cuales 

representan sus entradas. (Aguilar, L. 2019). 

https://doi.org/10.54353/ritp.v2i2.e001
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El desarrollo de las pruebas de tratabilidad o ensayo de jarras en muestras de 

aguas residuales de origen industrial, con el fin de simular el proceso de coagulación a 

nivel laboratorio. Esto permite identificar cual es el coagulante y dosis adecuada a 

emplear, para clarificar el agua y obtener una remoción de los sólidos suspendidos y en 

suspensión del agua cruda, quedando a punto para continuar con los otros procesos de 

tratamiento establecidos en la Planta de tratamiento de aguas residuales. (Fúquene, 

Diana; Yate, Andrea; 2018). 

Estas soluciones presentan inconvenientes puesto que suponen una solución de 

tratamiento de efluentes de curtiduría por tipo de efluente, sin tratar la totalidad que va a 

descargar directo a la red de alcantarillado. Por tanto, que el sistema piloto de tratamiento 

de efluentes integrado con una red neuronal artificial hoy presentado ha validado su 

eficacia y eficiencia bajo un proceso contemplado en fases secuenciales entre las que 

se considera principalmente el uso de una red neuronal artificial que dosifica las 

cantidades específicas de floculante y coagulante de acuerdo a las características 

específicos de la mezcla de procesos a descargar. 

 

Material y métodos  

a. Diseño y construcción de la red neuronal 

El primer paso consistió en el análisis exploratorio de los datos con el objetivo de 

determinar las variables de entrada y salida:  

1. ph_inicial: Variable que mide el pH inicial en los efluentes antes del proceso de 

tratamiento.  

2. turbidez_inicial: Variable que mide el nivel de turbidez inicial en los efluentes antes 

del proceso de tratamiento.  

3. dosificación_ácido: Variable dependiente que determina el nivel de dosificación de 

ácido en el proceso con el objetivo de regular el pH inicial a niveles compatibles con 

la normativa ambiental.  

4. dosificación_coagulante: Variable dependiente que determina el nivel de 

dosificación de coagulante en el proceso.  

5. dosificación_floculante: Variable dependiente que determina el nivel de dosificación 

de floculante en el proceso. 

6. ph_final: Variable dependiente que determina el nivel de pH final en el proceso. 

Esta es la variable que finalmente se monitorea con el objetivo de determinar si se 

está cumpliendo con la normativa ambiental.  

 

https://doi.org/10.54353/ritp.v2i2.e001
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Por medio de Python, lenguaje de programación de alto nivel que permite la 

implementación de prototipos de manera sencilla, asimismo, se hizo uso de la librería 

Tensorflow para la creación de los modelos basados en redes neuronales.  

El proceso de construcción de datos se basó en las muestras que se realizaron 

durante las pruebas de jarras. Se recolectaron 110 muestras, cabe precisar que para 

realizar todos los experimentos se tomó en cuenta los valores normados (ver Tabla 1). 

 

Tabla 1  

Valores según normatividad ambiental. 

Parámetro M-1 M-2 M-3 LMP VMA 

Aceites y grasas (HEM) 45.2 411 106 50 100 

Demanda Bioquímica de 

oxígeno (DBO5) 
329 1150 246.6 500 500 

Demanda Química de 

oxígeno (DQO) 
4923 5257 1978 1500 1000 

Sólidos suspendidos totales 

(TSS) 
848 2354 1002 500 500 

pH (medición en campo) 11.51 12.62 11.66 6 – 9 6 – 9 

Sulfuros 62.4 20.1 27.8 4 2 

Cromo Total (Cr) 2.8576 80 80 2 10 

Nota: Decreto Supremo 010-2019-VIVIENDA 

 
 

Con los datos filtrados se procedió a calcular correlaciones entre las variables 

utilizando la correlación de Pearson. Estas correlaciones brindaron las relaciones entre 

https://doi.org/10.54353/ritp.v2i2.e001
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las variables independientes y dependientes, y sirvieron como guía durante el proceso 

de construcción de los modelos. Es importante mencionar que los datos fueron 

previamente filtrados, ya que debido a la naturaleza de los experimentos realizados en 

laboratorio existían varias muestras que introducían ruido. Durante el proceso de 

experimentación para encontrar el valor ideal de dosificante se mantenían constantes las 

variables independientes (condiciones iniciales) y se modificaba la cantidad de 

dosificante (variable dependiente) hasta que se conseguía que el efluente se encuentre 

dentro de los límites ambientales. Es lógico que aquellos experimentos de dosificación 

que no conseguían disminuir lo suficiente la turbidez del efluente fueron descartados 

(Tabla 2). 

 

Tabla 2:  

Matriz de correlaciones 

 Ph_init Turbidez Dos_acido Dos_coag dos_floc Ph_final Turb_final 

Ph_init 1.00000 0.333721 0.828701 0.099304 -0.046230 0.331741 0.387737 

Turbidez 0.333721 1.000000 0.521620 0.283831 -0.021355 0.314045 0.741058 

Dos_Acido 0.828701 0.521620 1.000000 0.128696 -0.006529 0.248681 0.625896 

Dos_coag 0.099304 0.283831 0.128696 1.000000 0.001560 0.037142 0.081020 

Dos_floc -0.046230 -0.021355 -0.006529 0.001560 1.000000 -0.187542 -0.015155 

Ph_final 0.331741 0.314045 0.248681 0.037142 -0.187542 1.000000 0.184980 

Turb_final 0.387737 0.741058 0.625896 0.081020 0.184980 0.184980 1.000000 

Nota: Matriz de correlaciones entre las variables de acuerdo a la correlación de Pearson 

 

Se continuó con la normalización de datos que consistió en procesar los datos de 

forma que al final cada variable tenga una desviación estándar igual a 1 y una media 

igual a 0. De esta forma se consiguió que todas las variables en la base de datos tengan 

la misma escala y no generan un sesgo en el modelo durante el entrenamiento (Tabla3). 

Una vez normalizada, se procedió a generar el modelo especificando el algoritmo 

de optimización a utilizar, y la función de pérdida o error a monitorear. Para todos los 

experimentos se utilizó el optimizador Adam, que es la opción por defecto para cualquier 

tipo de configuración. Por otro lado, se utilizó la función de pérdida del tipo Error 

Cuadrático Medio por tratarse de un problema de regresión. 

https://doi.org/10.54353/ritp.v2i2.e001
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Tabla 3 

Muestras del dataset normalizado. 

 Ph_init Turbidez Dos_acido Dos_coag dos_floc Ph_final Turb_final 

0 
0.319482 0.214362 0.380531 0.315309 -0.941618 0.291231 

-0.599895 

1 
1.599546 0.156892 1.889430 -1.496284 1.068864 0.366813 

0.069465 

2 
0.755248 1.813199 0.380531 0.088860 1.068864 0.245881 2.077999 

3 
-1.445373 0.062938 -1.012300 0.768207 -0.941618 -0.736688 -0.621882 

4 
1.599546 0.156892 2.469777 -1.496284 1.068864 -0.132030 

2.761521 

… 
… … … … … … 

… 

110 
0.319482 0.214362 0.380531 0.994656 -0.941618 -0.011098 

-0.610048 

Nota: Conjunto de datos (dataset) normalizado para evitar el sesgo durante el entrenamiento 

 

Adicionalmente a los parámetros propios del modelo, se indicaron ciertos hiper 

parámetros fundamentales durante el entrenamiento del modelo: 

 

1. Tasa de Aprendizaje: Factor que modula la intensidad en la modificación de los pesos 

de la red. Este factor es uno de los más importantes y puede determinar la 

convergencia o la divergencia del modelo hacia una solución óptima. 

2. Tamaño de Batch: El tamaño del batch nos indica cuantos datos está procesando el 

modelo al mismo tiempo. Mientras más grande sea el tamaño del batch mejores 

resultados obtendremos durante el entrenamiento. Sin embargo, esto debe estar 

balanceado con las capacidades o recursos computacionales disponibles. 

3. Número de Épocas: Indica cuántas veces el algoritmo procesa todo el dataset. El 

procesamiento de todo el dataset una sola vez indica una época. El número de épocas 

normalmente se establece lo suficientemente alto para que el modelo sea capaz de 

aprender lo suficientemente bien el dataset de entrenamiento. Sin embargo, se debe 

tener cuidado en no establecerlo demasiado alto de forma que el modelo empiece a 

sobre entrenar, es decir no tener un buen rendimiento sobre datos que nunca ha visto.  

  

El siguiente código muestra la configuración que se probó en cada modelo: 

 

 

https://doi.org/10.54353/ritp.v2i2.e001
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Figura 1 

Código de configuración de la red neuronal 

 

Nota. La imagen representa el código de configuración de la red neuronal según el lenguaje de 

programación Phyton. 

En línea con el procedimiento descrito, se continuó con el entrenamiento y 

evaluación del modelo el cual siguió el enfoque de Kfold cross validation, en donde 

partimos los datos en un número determinado de particiones. En nuestro caso utilizamos 

5 particiones, donde cada partición contenía alrededor de 30 y 40 muestras. El objetivo 

consistió en entrenar el modelo con 4 de las 5 particiones y evaluar el modelo con la 

partición que hemos dejado de lado. El proceso se repitió utilizando en cada iteración 

particiones distintas.  

 

Finalmente, se determinó la configuración (unidades neuronales por capa), 

variables de entrada, variable de salida y el error de evaluación de cada uno de los 

modelos entrenados (Tabla 4): 

 

Tabla 4 

Resumen de los modelos entrenados 

Modelo Configuración Variables de Entrada 
Variables 
de Salida 

Error Final 

Modelo de 
Dosificación 

de Ácido 

Capa Entrada: 02 
Capa Oculta: 05 
Capa Salida: 01 

ph inicial 
turbidez inicial 

dosificación 
ácido 

0.13 

Modelo de 
Dosificación 

de Coagulante 

Capa Entrada: 02 
Capa Oculta: 03 
Capa Salida: 01 

ph inicial 
turbidez inicial 

dosificación 
coagulante 

 
0.743 

Nota: Error final de cada modelado entrenado 

https://doi.org/10.54353/ritp.v2i2.e001
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La columna error final indica el rendimiento de los modelos. Por ejemplo, si el 

modelo de ácido realiza una predicción de que la dosificación debe ser 0.5 ml, el valor 

ideal puede estar en el rango de 0.5 +- 0.13 ml. 

 

Ambos modelos solo tienen una capa oculta tal como se puede observar en la 

columna configuración, lo único que cambia es el número de unidades neuronales. La 

función de activación en ambos casos para la capa oculta es una función sigmoides. Las 

capas de salida no tienen función de activación debido a que se trata de un problema de 

regresión. 

 

b. Remoción de carga orgánica sedimentable 

El agua residual es vertida a una poza, para ser posteriormente impulsada hacia la etapa 

de tratamiento físico químico. La poza es rectangular con un volumen de 22.0 metros 

cúbicos fabricado de concreto. El tanque dispone de un agitador de hélice sumergido. 

 

c. Red neuronal artificial 

La red entrenada refirió variables de entrada medidas con sensores en las pozas de 

almacenamiento: pH inicial y turbidez, la cual procesó generando de forma automática 

las dosificaciones de ácido, álcalis, floculante y coagulante.  

 
d. Regulación de pH 

El agua procedente del tanque eductor llega al tanque de ajuste de pH, donde se dosifica 

ácido o álcalis para regular el pH del agua a 7.5, como agente oxidante se usa el peróxido 

de hidrógeno (H2O2) al 20% y como álcalis el ácido fosfórico (H₃PO₄) al 20%. El tanque 

tiene un diámetro de 2.20 metros y una altura de 1.82 metros, con un volumen de 5 

metros cúbicos. El tiempo de residencia es de 10 minutos. Este tanque cuenta con un 

agitador vertical tipo paleta. 

 

e. Coagulación 

El agua residual pasa a un tanque de coagulación, donde se dosifica el coagulante 

(Policloruro de aluminio al 30%) para que se produzca la coagulación. El volumen de 

este tanque es de 5 metros cúbicos. El tiempo de retención hidráulica es de 10 minutos. 

Se opta por un agitador tipo paleta en posición vertical para que produzca una mezcla 

rápida. 

 

f. Floculación 

Finalizada la coagulación, el agua residual pasa a dos tolvas de 3 metros cúbicos cada 

una, donde se dosifica un floculante orgánico de 500 ppm para que se produzca la 

https://doi.org/10.54353/ritp.v2i2.e001
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floculación. El tiempo de retención hidráulica en este compartimiento es de 30 minutos. 

Se opta por un agitador tipo paleta para que produzca una mezcla lenta y no rompa los 

flóculos formados. Finalmente, después de haber terminado el proceso de floculación el 

agua es retenida en las tolvas para se lleve a cabo la sedimentación de los flóculos 

formados (Figura 2). 

 

Figura 2 

Formación de flóculos 

 

 

Nota. La imagen muestra el proceso de floculación en donde al finalizar el agua es retenida en 

las tolvas para se lleve a cabo la sedimentación de los flóculos. 

Una vez que se ha terminado el proceso se hace la primera descarga de lodos 

a la poza de almacenamiento. 

g. Sistema de aireación 

El sobrenadante de la tolva de sedimentación es recogido en la piscina de aireación para 

eliminar la carga orgánica que contiene el agua. El fango o lodo que se extrae por la 

parte inferior de las tolvas es almacenado en un recipiente metálico para su posterior 

disposición. Los reactivos químicos son almacenados en depósitos cilíndricos con un 

volumen aproximado de 100 litros para el ácido, oxidante, coagulante y floculante (Figura 

3). 

https://doi.org/10.54353/ritp.v2i2.e001
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Figura 3:  

Diseño visual del sistema de tratamiento de aguas residuales industriales con redes neuronales. 

 

 
Nota. La imagen muestra el proceso gráfico del tratamiento de efluentes indicando las etapas y 
secuencia 
 
 
Resultados 

 

La remoción de la Demanda Bioquímica de Oxígeno (DBO5), Demanda Química de 

Oxígeno (DQO) y Sólidos Suspendidos Totales (SST) ha sido excepcional al finalizar el 

tratamiento, demostrando que logró ser eficaz la dosificación de la red neuronal artificial 

y eficiente permitiendo que se recupere un aproximado del 50% al 70% de efluente 

tratado, el cual podría utilizarse como parte del proceso (Tabla 5 y 6).  

 

 

https://doi.org/10.54353/ritp.v2i2.e002
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Tabla 5 

Muestras tomadas del sistema de tratamiento de efluentes  

Muestras Descripción 

M-1 Al final del proceso físico químico 

M-2 La primera poza de aireación 

M -3 Descarga final de la poza de aireación 

Nota: Descripción de las muestras tomadas del sistema de tratamiento de efluentes 

 

Tabla 6 

Resultados obtenidos en cada muestra de efluente  

Parámetros Unidad M1 M2 M3 VMA 

Aceites y grasas mg/L 1.8 4.2 6.5 100 

DBO O2 mg/L 212.9 435.6 211.3 500 

DQO mg/L 1468 564 790 1000 

Cianuro Total mg/L 0.005 0.005 0.005 1 

Cromo Hexavalente mg/L 0.007 0.007 0.007 0.5 

Solidos Suspendidos 

totales 

mg/L 9.2 92.3 109.7 500 

Solidos Sedimentables mg/L 0.5 1.1 1.9 8.5 

Sulfatos mg/L 47.31 648.6 740.9 1000 

Nitrógeno Amoniacal mg/L 89.05 76.96 58.05 80 

Sulfuros mg/L 1.92 2.23 1.79 5 

pH  unidad pH 9.27 9.29 9.3 9 

T° °C 22.2 21.6 21.1 35 

Nota: Resultado analizado en laboratorio 
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Discusión 

El tratamiento de efluentes de curtiduría con procesos físico-químicos comandado por 

una red neuronal artificial es un procedimiento completo que, a diferencia de las técnicas 

convencionales, permite tratar las aguas residuales de todos los procesos sin necesidad 

de implementar técnicas para cada proceso por separado. 

La elección toma en consideración factores técnicos, económicos y sobre todo 

ambientales como: posibilidad de recirculación de agua, reducción de parámetros DBO5, 

DQO y SST, entre otros. 

Se usó un modelo neuronal artificial basado en redes neuronales multicapa 

feedfoward-backpropagation, para la estimación del valor de la turbidez de salida en el 

tratamiento de las aguas residuales. Posteriormente, se usaron las redes neuronales 

entrenadas para proponer dosificaciones óptimas de los productos y mejorar las 

condiciones de operación, lo que permitió obtener aguas residuales clarificadas, para lo 

cual se elaboraron cartas de optimización. Respecto a la evaluación del desempeño del 

modelo neuronal, se usó como indicador de desempeño el factor de correlación lineal R. 

Los resultados de correlación entre los valores estimados y reales de la turbidez de salida 

muestran la confiabilidad en la aplicación como herramienta de predicción. (González, L. 

& García, J. 2020). Confirmando así que el uso de redes neuronales artificiales para la 

determinación de los valores de dosificaciones y para nuestro caso para la posterior 

aplicación en el tratamiento de efluentes de curtiembres. 

El prototipo desarrollado combina un arreglo de sensores de gas de óxido de 

estaño con una red neuronal utilizada para identificar químicos comunes presentes en el 

hogar. Los resultados iniciales demuestran la capacidad para el reconocimiento de 

patrones del paradigma de las redes neuronales en el análisis de sensores. Al mismo 

tiempo, el prototipo es un compacto y portátil que facilita el análisis en tiempo real, así 

como la automatización del proceso de censura, análisis y reconocimiento. En cuanto a 

las dos redes neuronales creadas, la primera presenta una tasa de falsos positivos menor 

a la siguiente, aunque en ambas, dicha tasa de falsos positivos es pequeña y aceptable 

para el desarrollo de soluciones, sin embargo la primera, que únicamente contiene 3 

neuronas en la capa oculta, presenta una tasa de falsos positivos menores y al mismo 

tiempo una carga de procesamiento mucho menor que la red con 10 neuronas en la capa 

oculta. Con este hecho resulta aceptable incorporar algoritmos de redes neuronales en 

sistemas portátiles. (Rubio, J.A. Hernández-Aguilar, F.J. Ávila-Camacho, J.M. Stein-

Carrillo, A. Meléndez-Ramírez 2016). La precisión para las dosificaciones va a generar 

variaciones de acuerdo a las variables que la red neuronal artificial deba analizar y al 

nivel de capas que se desarrollen hasta determinar el modelo óptimo.  
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Se utilizó en el laboratorio el ensayo denominado Prueba de Jarras para 

determinar la dosis de coagulante a emplear durante un periodo de once meses, con 

muestreo aleatorio diario. Las variables consideradas para el estudio fueron la turbidez, 

el pH, la conductividad, el color y sólidos disueltos totales con una temperatura promedio 

de 10 ºC y un caudal promedio de 148 l/s. Los cálculos obtenidos fueron utilizados para 

entrenar y probar dosis óptimas de coagulante haciendo uso de redes neuronales 

artificiales con tres topologías específicas: Red de tres capas (entrada de cinco 

neuronas, oculta de cinco neuronas, salida una neurona), Red de cuatro capas (entrada 

de cinco neuronas, dos ocultas de seis y cinco neuronas, salida una neurona) y Red de 

cuatro capas con dos ocultas llamada también de regresión generalizada (una de entrada 

con cinco neuronas, dos capas ocultas, en la primera se adiciona una neurona por cada 

caso entrenado y en la segunda oculta dos neuronas receptoras para regresión y una 

capa de salida con una neurona). Se concluyó que la topología más adecuada fue la 

última con una asertividad de 96.9 por ciento frente a los datos reales y en su 

entrenamiento se obtuvo una correlación de 98.4 por ciento evidenciando además que 

los factores más influentes al modelo son: color, turbidez y pH. La red seleccionada 

finalmente permitió predecir la dosificación de coagulante óptimo con una probabilidad 

de error máximo de 1.6 por ciento y en tiempo real con nuevos valores de entrada en el 

agua a tratar sin necesidad de recurrir a la Prueba de Jarras el cual sólo se realiza 

posteriormente para enriquecer su aprendizaje.      (Peña, A. 2016). Para poder 

determinar las variables y la influencia de estas en el tratamiento de efluentes en 

curtiduría es importante el uso de la prueba de jarras, lo que nos indica como ir 

desarrollando modelos para las variables, obtener datos y entrenar la red neuronal 

artificial. 

Se llevó a cabo la determinación de la dosis óptima de Sulfato de Aluminio 

(Al2(SO4)3) utilizando modelos de correlación entre variables como las regresiones 

lineales y polinomiales y al mismo tiempo un modelo de Red Neuronal Artificial (RNA) 

que al enfrentarse a variaciones en tiempo real de la turbidez sea capaz de arrojar como 

resultado una dosis indicada, con el objetivo de conseguir una coagulación efectiva en 

el agua a tratar y de esta forma evitar la presencia excesiva o insuficiente de coagulante, 

minimizar la necesidad de realizar ensayos de jarras continuamente y al mismo tiempo 

lograr disminuir las pérdidas de carácter económico debido al gasto inadecuado del 

coagulante. (Barajas-Garzón, Claudia; León-Luque, Andrea 2016). Las empresas 

dedicadas a la curtiduría varían el tipo de piel que usan y los tipos de químicos para su 

curtición, por esto la importancia de poder integrar un modelo de red neuronal artificial al 

tratamiento de efluentes, que permita por medio de variables generar dosificaciones 

optimas de forma rápida y elevar la calidad ambiental. 

El proceso de coagulación y floculación es una de las operaciones más 

importantes dentro del proceso de potabilización del agua, pero su efectividad se ve 
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afectada debido al cálculo de la dosificación de coagulante que se realiza mediante las 

pruebas Jar o el uso del Detector de Corriente de Flujo ( SCD), teniendo como principal 

inconveniente que no tiene en cuenta el cambio de los parámetros fisicoquímicos del 

agua en tiempo real y además la necesidad de obtener un punto óptimo de 

funcionamiento del equipo. En este trabajo la dosificación óptima de Sulfato de Aluminio 

(Al 2 (SO 4 ) 3 18H 2O) se determina mediante un modelo de Red Neuronal Artificial 

(RNA) que, ante variaciones de turbidez en tiempo real, es capaz de calcular una dosis 

indicada de coagulante, con el fin de conseguir una coagulación eficaz en el agua del 

ensayo y evitar un exceso o insuficiencia. presencia de coagulante, minimizar la 

necesidad de hacer probar los frascos continuamente y reducir las pérdidas económicas 

por gasto inadecuado de coagulante. La RNA creada es capaz de calcular la dosificación 

en función del valor de turbidez inicial del fluido a tratar con un MSE 0 mg/L, consiguiendo 

porcentajes de eliminación superiores al 93% en la mayoría de los casos. (León-Duque, 

A. J.; Barajas, C. L.; Peña-Guzmán, C. A.; 2016). Confirmando que el uso óptimo de 

variables por medio de las redes neuronales artificiales genera dosificaciones optimas 

que permiten dentro de las empresas de curtiduría poder llevar a cabo labores más 

rápidas de control ambiental y cumplir con lo estipulado en la norma. 

La alternativa de determinar las dosificaciones de coagulante por medio de un 

modelo de red neuronal artificial entrenada y validada ha demostrado su eficacia pues 

permitirá implementar un sistema de control automático que puede ser utilizado en el 

tratamiento de agua potable, el cual será capaz de predecir y aplicar una dosis óptima 

de coagulante de acuerdo con el nivel de turbidez inicial que presente el agua a tratar. 

La elección del proyecto por apostar por el uso de una red neuronal artificial para 

determinar las dosificaciones no solo de coagulante, sino de ácido, álcalis y floculante a 

partir del pH y turbidez radica en la repercusión que tienen estos en cuanto a los 

parámetros de estudio para la mezcla de procesos de curtiduría y evidencia en la 

reducción de los parámetros de evaluación según el DS 010-2019-VIVIENDA.  

Nuestro estudio evidencia en torno al uso del proceso físico-químico una 

reducción de 70% en los parámetros, obteniendo una concentración de DBO5, DQO y 

SST en torno a los 211.3 O2 mg/L, 790 mg/L y 109.7 mg/L respectivamente. 

La investigación internacional y los resultados de nuestra propuesta logran 

finalmente comprobar la disminución de la carga orgánica DBO5, DQO y SST; asimismo, 

se corrobora la reducción de la materia orgánica percibida como DBO5 y materia 

inorgánica como DQO, logrando reducir, a su vez la presencia de cromo hexavalente, 

cianuro total, aceites y grasas, sólidos sedimentables y sulfatos. 
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Conclusiones 

Debido al tratamiento del agua residual generada de 5 m3/día, se logró reducir 70% los 

parámetros, obteniendo una concentración de DBO5, DQO y SST en torno a los 211.3 

O2 mg/L, 790 mg/L y 109.7 mg/L respectivamente; en tanto se obtuvo 0.007 mg/L de 

cromo hexavalente, 0.005 mg/L de cianuro total, 1.9 mg/L de sólidos sedimentables, 6.5 

mg/L de aceites y grasas y 740.9 mg/L de sulfatos; todo ello bajo el sistema de 

tratamiento validado a diferencia de las metodologías convencionales que solo tratan los 

efluentes por cada proceso por separado, optimizando en un 70 por ciento el proceso y 

permitiendo así el cumplimiento de los valores máximos admisibles del  DS 010-2019-

VIVIENDA. 
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