Opportunities and limitations for the manufacturing of clinical-grade CAR-T cells

Authors

  • Fiorella Ojeda Grupo de Investigación en Dispositivos Médicos, Pontificia Universidad Católica del Perú, Lima, Perú. https://orcid.org/0009-0004-8539-1131
  • José Félix Grupo de Investigación en Dispositivos Médicos, Pontificia Universidad Católica del Perú, Lima, Perú https://orcid.org/0009-0000-5251-4159
  • Fanny Lys Casado Peña Grupo de Investigación en Dispositivos Médicos, Pontificia Universidad Católica del Perú, Lima, Perú https://orcid.org/0000-0002-8791-626X

DOI:

https://doi.org/10.54353/ritp.v4i2.001

Keywords:

health innovation, cancer, CAR-T cells, cellular therapy, manufacturing

Abstract

Cell therapy using CAR-T cells is one of the most promising treatment for cancer; however, it is still in the final phases of clinical trials. It involves extracting T cells from a donor, genetically modifying them to express a chimeric antigen receptor, and infusing the modified cells back into patients. The objective of this article is to evaluate the products and production processes of CAR-T cells offered for clinical purposes by companies internationally to determine the current state of these technologies and their potential application in Peru. We concluded that to date it is an inaccessible therapy in Peru due to needs including: optimization of manufacturing processes, improvements in access, effectiveness and safety of CAR-T therapies, and a larger number of regulatory approvals for cell therapies for both cancer and other diseases.

Downloads

Download data is not yet available.

References

Abou-El-Enein, M., Elsallab, M., Feldman, S. A., Fesnak, A. D., Heslop, H. E., Marks, P., Till, B. G., Bauer, G., & Savoldo, B. (2021). Scalable Manufacturing of CAR T cells for Cancer Immunotherapy. Blood cancer discovery, 2(5), 408–422.

Brentjens, R. J., Latouche, J. B., Santos, E., Marti, F., Gong, M. C., Lyddane, C., King, P. D., Larson, S., Weiss, M., Rivière, I., & Sadelain, M. (2003). Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nature medicine, 9(3), 279–286.

Bryan, W., et al. (s.f.). Summary Basis for Regulatory Action Template Breyanzi. Available: https://fda.report/media/146242/Summary+Basis+for+Regulatory+Action+-+BREYANZI.pdf

Cai, Y., Prochazkova, M., Jiang, C., Song, H. W., Jin, J., Moses, L., Gkitsas, N., Somerville, R. P., Highfill, S. L., Panch, S., Stroncek, D. F., & Jin, P. (2021). Establishment and validation of in-house cryopreserved CAR/TCR-T cell flow cytometry quality control. Journal of translational medicine, 19(1), 523. https://doi.org/10.1186/s12967-021-03193-7

Cancer.org. (2019). Terapia de células CAR-T y sus efectos secundarios. https://www.cancer.org/es/tratamiento/tratamientos-y-efectos-secundarios/tipos-de-tratamiento/inmunoterapia/terapia-de-celulas-t.html

Cohen, A. D., Garfall, A. L., Stadtmauer, E. A., Melenhorst, J. J., Lacey, S. F., Lancaster, E., Vogl, D. T., Weiss, B. M., Dengel, K., Nelson, A., Plesa, G., Chen, F., Davis, M. M., Hwang, W. T., Young, R. M., Brogdon, J. L., Isaacs, R., Pruteanu-Malinici, I., Siegel, D. L., Levine, B. L., … Milone, M. C. (2019). B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. The Journal of clinical investigation, 129(6), 2210–2221.

Depil, S., Duchateau, P., Grupp, S.A. et al. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov 19, 185–199 (2020).

Dreyzin, A., Panch, S. R., Shalabi, H., Yates, B., Highfill, S. L., Jin, P., Stroncek, D., & Shah, N. N. (2022). Cryopreserved anti-CD22 and bispecific anti-CD19/22 CAR T cells are as effective as freshly infused cells. Molecular therapy. Methods & clinical development, 28, 51–61. https://doi.org/10.1016/j.omtm.2022.12.004

EsSalud. (2009). Normas Para La Investigación Clínica En Terapia Celular y Medicina Regenerativa de ESSALUD. [En línea]. Disponible en: https://ww1.essalud.gob.pe/compendio/pdf/0000002878_pdf.pdf

Ghassemi, S., & Milone, M. C. (2019). Manufacturing Chimeric Antigen Receptor (CAR) T Cells for Adoptive Immunotherapy. Journal of visualized experiments : JoVE, (154), 10.3791/59949.

Genotipia. (2022). Historia de la Terapia génica. https://genotipia.com/historia-de-la-terapia-genica/

Germann, A., Oh, Y.-J., Schmidt, T., Schön, U., Zimmermann, H., & von Briesen, H. (2013). Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function. Cryobiology, 67(2), 193–200. https://doi.org/10.1016/j.cryobiol.2013.06.012

GLOBOCAN. (2020). Estimación de la prevalencia a los 5 años del diagnóstico de cáncer a nivel mundial para el año 2020. https://seom.org/images/LAS_CIFRAS_DEL_CANCER_EN_ESPANA_2022.pdf

Hanley, P. J. (2019). Fresh versus frozen: Effects of cryopreservation on CAR-T cells. Molecular Therapy, 27(7), 1213–1214.

Harris, E., & Elmer, J. J. (2018). Optimization of electroporation and other non‐viral gene delivery strategies for T cells. Biotechnology Progress, 37(1), e3066.

IASO Therapeutics. (s.f.). Science & Products - Manufacturing. IASO Therapeutics. Disponible: https://www.iasobio.com/operation.php

IASO Therapeutics. (s.f.). Science & Products - Pipeline. IASO Therapeutics. Disponible: https://www.iasobio.com/proline.php

Ino, K., Ageitos, A. G., Singh, R. K., & Talmadge, J. E. (2001). Activation-induced T cell apoptosis by monocytes from stem cell products. International immunopharmacology, 1(7), 1307–1319.

Instituto Nacional del Cáncer. (2021). ¿Qué es el cáncer? https://www.cancer.gov/espanol/cancer/naturaleza/que-es#:~:text=El%20c%C3%A1ncer%20que%20se%20disemin%C3%B3,cancerosas%20que%20el%20c%C3%A1ncer%20primario

Instituto Nacional del Cáncer. (2019). Cómo se diagnostica el cáncer. https://www.cancer.gov/espanol/cancer/diagnostico-estadificacion/diagnostico

Instituto Nacional del Cáncer. (2023). Efectos secundarios del tratamiento del cáncer. https://www.cancer.gov/espanol/cancer/tratamiento/efectos-secundarios

International Agency for Research on Cancer. (2020). Global Cancer Observatory: Cancer Today. Iarc.fr. https://gco.iarc.fr/today/home

Janssen. (2023). CARVYKTI - Manufacturing Process. Janssenscience.com. Disponible: https://www.janssenscience.com/products/carvykti/medical-content/carvykti-manufacturing-process

June C. H. (2007). Principles of adoptive T cell cancer therapy. The Journal of clinical investigation, 117(5), 1204–1212.

Köhl, U., Arsenieva, S., Holzinger, A., & Abken, H. (2018). CAR T Cells in Trials: Recent Achievements and Challenges that Remain in the Production of Modified T Cells for Clinical Applications. Human gene therapy, 29(5), 559–568.

Levine, B. Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells. Cancer Gene Ther 22, 79–84 (2015).

Lu, X. (2017). Summary Basis for Regulatory Action. [Online]. Disponible: https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/August-30--2017-Summary-Basis-for-Regulatory-Action---KYMRIAH.pdf

Lu, J., Jiang, G. The journey of CAR-T therapy in hematological malignancies. Mol Cancer 21, 194 (2022).

Málaga, Germán, & Zúñiga-Rivera, Ana. (2012). ¿Contribuyen los ensayos clínicos al

desarrollo de la investigación en el Perú?: ¿cómo lograrlo?. Revista Peruana de Medicina Experimental y Salud Publica, 29(4), 529-534. Recuperado en 27 de septiembre de 2023, de http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342012000400017&lng=es&tlng=es.

Master A. (2019). Kymriah vs. Yescarta [UPDATED] | Nucleus Biologics. Nucleus Biologics. https://nucleusbiologics.com/resources/kymriah-vs-yescarta/

McFarland, D. C., Zhang, C., Thomas, H. C., & T L, R. (2006). Confounding effects of platelets on flow cytometric analysis and cell-sorting experiments using blood-derived cells. Cytometry. Part A : the journal of the International Society for Analytical Cytology, 69(2), 86–94.

McGrath E, Machalik P. The Regulatory Framework for CAR-T Cells in Europe: Current Status and Foreseeable Changes AND Centre Qualification by Competent Authorities and Manufacturers. 2022 Feb 7. In: Kröger N, Gribben J, Chabannon C, et al., editors. The EBMT/EHA CAR-T Cell Handbook [Internet]. Cham (CH): Springer; 2022. Chapter 37.

Memorial Sloan Kettering Cancer Center. (s.f.). Car T cells: Timeline of progress. https://www.mskcc.org/timeline/car-t-timeline-progress

Novartis Pharmaceuticals Corporation. (2018). Package insert - KymriahTM (tisagenlecleucel). https://www.fda.gov/media/107296/download

Novas, A. (2020). Costo de la terapia con Células Madre y por qué es tan costosa - Curso Celulas Madre. https://cursocelulasmadre.com/costo-de-la-terapia-con-celulas-madre/

Qin, C., Tian DS., Zhou, LQ. et al. Anti-BCMA CAR T-cell therapy CT103A in relapsed or refractory AQP4-IgG seropositive neuromyelitis optica spectrum disorders: phase 1 trial interim results. Sig Transduct Target Ther 8, 5 (2023).

Reddy, O. L., Stroncek, D. F., & Panch, S. R. (2020). Improving CAR T cell therapy by optimizing critical quality attributes. Seminars in hematology, 57(2), 33–38.

Rioufol, C., & Wichmann, C. (2022). Receiving, Handling, Storage, Thawing, Distribution, and Administration of CAR-T Cells Shipped from the Manufacturing Facility. In N. Kröger (Eds.) et. al., The EBMT/EHA CAR-T Cell Handbook. (pp. 37–43). Springer.

Rochman, Y., Spolski, R., & Leonard, W. (2009). New insights into the regulation of T cells by γc family cytokines. Nat Rev Immunol 9, 480–490.

Simmons, G. L., & Castaneda Puglianini, O. (2022). T-Cell-Based Cellular Immunotherapy of Multiple Myeloma: Current Developments. Cancers, 14(17), 4249.

U.S. Food and Drug Administration, Center for Drug Evaluation and Research. (2017). STN: BL 125643/0 approval letter. https://www.fda.gov/media/108458/download

U.S. Food and Drug Administration, Center for Drug Evaluation and Research. (2019). https://www.fda.gov/patients/drug-development-process/step-3-clinical-research

U.S. Food and Drug Administration, Center for Drug Evaluation and Research. (2021). STN: BL 125736/0 approval letter. https://www.fda.gov/media/147062/download

U.S. Food and Drug Administration, Center for Drug Evaluation and Research. (2022). STN: BL 125714/90 approval letter. https://www.fda.gov/media/159473/download

U.S. National Library of Medicine. (2021). Tratamientos para el Cáncer: Medlineplus Enciclopedia Médica. MedlinePlus. https://medlineplus.gov/spanish/ency/patientinstructions/000901.htm

Vormittag, P., Gunn, R., Ghorashian, S., & Veraitch, F. S. (2018). A guide to manufacturing CAR T cell therapies. Current opinion in biotechnology, 53, 164–181.

Wang, X., & Rivière, I. (2016). Clinical manufacturing of CAR T cells: foundation of a promising therapy. Molecular therapy oncolytics, 3, 16015.

World Health Organization. (2023). ICTRP search portal. World Health Organization. https://www.who.int/clinical-trials-registry-platform/the-ictrp-search-portal#:~:text=The%20ICTRP%20Search%20Portal%20aims,for%20content%20and%20quality%20control

Yang, M., Tkach, D., Boyne, A., Kazancioglu, S., Duclert, A., Poirot, L., Duchateau, P., & Juillerat, A. (2022). Optimized two-step electroporation process to achieve efficient nonviral-mediated gene insertion into primary T cells. FEBS open bio, 12(1), 38–50.

Ye, Z. (2022) Summary Basis for Regulatory Action Carvykti. [Online]. Disponible: https://www.fda.gov/media/156999/download

Published

2024-10-03 — Updated on 2024-11-12

How to Cite

Ojeda , F., Félix , J. ., & Casado Peña, F. L. (2024). Opportunities and limitations for the manufacturing of clinical-grade CAR-T cells. INNOVATION AND PRODUCTIVE TRANSFERENCE JOURNAL, 4(2), 001. https://doi.org/10.54353/ritp.v4i2.001