Fermentation of coffee residues with Aspergillus Niger for the production of cellulase

Authors

  • Edwar Luis Lizarraga Alvarez Centro Ecuménico de Promoción y Acción Social Norte, Trujillo, Perú https://orcid.org/0000-0001-6085-7223
  • Deblyn Manuel Haro Dominguez Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Trujillo, Perú
  • Lidia Estefy Cordova Valles Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Trujillo, Perú

DOI:

https://doi.org/10.54353/ritp.v1i1.e005

Keywords:

cellulase, Aspergillus niger, coffee chaff

Abstract

The study was carried out for the production of cellulase from Aspergillus niger, with the objective of taking advantage of the coffee residues (Broza) after being filtered as a substrate, for the conditioning of the solid state fermentation (SSF) and submerged fermentation (SmF). The chaff was collected and dried in an oven to constant weight (6-8% humidity), a washing was carried out with deionized water and a 3% (w / v) solution of NaOH 1.0 M diluted in ethanol, the chaff was placed in the autoclave for 30 minutes at 121 ° C, rinsed with deionized water, the solid fraction and taken to an oven at 40 ° C until constant weight. Subsequently, it was passed through a No. 70 sieve, packaged in bottles with a hermetic lid and stored at room temperature. For SSF and SmF, 250 ml Erlenmeyer flasks were used, containing 10 g of chaff and 15 ml of distilled water, 10 g of chaff and 100 ml of fermentation medium respectively, the solution was sterilized at 121ºC for 15 minutes and allowed to cool to room temperature. 1 ml of inoculum was added and incubated at 28 ° C on a rotary shaker at 250 rpm. It was possible to produce 92,500 FPU / ml in SSF and 78.7234 FPU / ml for SmF at pH 5.5. Consequently, these results provide a strategy for the use of coffee chaff as a substrate for the production of cellulase using Aspergillus niger

Downloads

Download data is not yet available.

References

Alcarraz Curi, M., Flores Paucarima, A., & Godoy Alcarraz, J. de D. (2010). Producción de celulasas por inmovilización celular para el tratamiento de efluentes industriales lignocelulósicos. Revista Del Instituto De investigación De La Facultad De Minas, Metalurgia y Ciencias Geográficas, 13(26), 97–102. https://doi.org/10.15381/iigeo.v13i26.507

Alvira, P., Tomás-Pejó, E., Ballesteros, M. and Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresource Technology, 101(13), 4851-4861. https://doi.org/10.1016/j.biortech.2009.11.093.

Bansal, N., Tewari, R., Soni, R. and Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues, Waste Management, 32(7), 1341-1346. https://doi.org/10.1016/j.wasman.2012.03.006

Behera, S. and Ray, R. (2016). Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies, Int. J. Biol. Macromol, 86, 656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090

Beyene, A., Yemane, D., Addis, T., Assayie, A., & Triest, L. (2014). Experimental evaluation of anaerobic digestion for coffee wastewater treatment and its biomethane recovery potential. Int. J. Environ. Sci. Technol, 11 (7), 1881-1886. https://doi.org/10.1007/s13762-013-0339-4.

Cerda, A., Gea, T., Vargas-García, M., & Sánchez, A. (2017). Towards a competitive solid state fermentation: cellulases production from coffee husk by sequential batch operation and role of microbial diversity. Sci. Total Environ, 589, 56-65. https://doi.org/10.1016/j.scitotenv.2017.02.184

Choi, I., Wi, S., Kim, S., & Bae, H. (2012). Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresour. Technol, 125, 132-137. https://doi.org/10.1016/j.biortech.2012.08.080

Coward-Kelly, G., Aiello-Mazzari, C., Kim, S., Granda, C., & Holtzapple, M. (2003). Suggested improvements to the standard filter paper assay used to measure cellulase activity. Biotechnol. Bioeng, 82, 745-749. https://doi.org/10.1002/bit.10620.

Cunha, F. M., Esperança, M. N., Zangirolami, T. C., Badino, A. C. and Farinas, C. S. (2012). Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase, Bioresource Technology, 112, pp. 270-274. https://doi.org/10.1016/j.biortech.2012.02.082

Domingues, F. C., Queiroz, J. A., Cabral, J. M. S. and Fonseca, L. P. (2000). The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology, 26(5-6), 394-401. https://doi.org/10.1016/S0141-0229(99)00166-0

El-Enshasy, H., Kleine, J., & Rinas, U. (2006). Agitation effects on morphology and protein productive fractions of filamentous- amentous and pelleted growth forms of recombinant Aspergillus niger. Process Biochemistry, 41: 2103-2112. https://doi.org/10.1016/j.procbio.2006.05.024

Fellows, P. (1994). Tecnologia del procesamiento de los alimentos: principios y practices.

Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry.

Gonzáles Dubón, M. J. (2015). Estudio de empaque de broza de cafe deshidratada y broza de cafe escaldada y deshidratada. [Tesis de Ingeniero, Universidad de Costa Rica]. https://hdl.handle.net/10669/73200

Gusakov, A. V. (2011). Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnology, 29(9), 419-425.

https://doi.org/10.1016/j.tibtech.2011.04.004.

Huang, Q., Yan, Q., Fu, J., Lv, X., Xiong, C., Lin, J. and Liu, Z. (2016). Comparative study of different alcoholate pretreatments for enhanced enzymatic hydrolysis of sugarcane bagasse. Bioresource Technology, 211, 464-471. https://doi.org/10.1016/j.biortech.2016.03.067.

Jönsson, L. J., Alriksson, B. and Nilvebrant, N.O. (2013). Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 6(1), 16. https://bit.ly/3umot6r.

Hubbell, C., & Ragauskas, A. (2010). Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresour. Technol. , 19, 101, 7410-7415. https://doi.org/10.1016/j.biortech.2010.04.029.

Karmakar, M., & Ray, R. (2010). Extra cellular endoglucanase production by Rhizopus oryzae in solid and liquid state fermentation of agro waste. Asian J. Biotechnol , 2, 27-36. https://dx.doi.org/10.3923/ajbkr.2010.27.36.

Kuhad, R., Deswal, D., Sharma, S., Bhattacharya, A., Jain, K., & Kaur, A. (2016). Revisiting cellulase lase production and redefining current strategies based on major challenges. Renew. Sust. Energ. Rev., 55, 249–272. https://doi.org/10.1016/j.rser.2015.10.132.

Karuna, N., Zhang, L., Walton, J. H., Couturier, M., Oztop, M. H., Master, E. R., McCarthy, M. J. and Jeoh, T. (2014). The impact of alkali pretreatment and post-pretreatment conditioning on the surface properties of rice straw affecting cellulose accessibility to cellulases. Bioresource Technology, 167, 232-240. https://doi.org/10.1016/j.biortech.2014.05.122.

Kumar, M., Singhal, A. and Thakur, I. S. (2016). Comparison of submerged and solid state pretreatment of sugarcane bagasse by Pandoraea sp. ISTKB: Enzymatic and structural analysis. Bioresource Technology, 203, 18-25. https://doi.org/10.1016/j.biortech.2015.12.034.

Kuhad, R., Deswal, D., Sharma, S., Bhattacharya, A., Jain, K. and Kaur, A. (2016). Revisiting cellulase production and redefining current strategies based on major challenges. Renew. Sust. Energ. Rev., 55, 249-272. https://doi.org/10.1016/j.rser.2015.10.132.

Labuza, T. (1982) Shelf-life dating of foods. Food & nutrition press.

Leifa, F., Pandey, A. and Soccol, C. (2000). Solid state cultivation - An efficient method to use toxic agro-industrial residues. Journal of Basic Micriobiology, 40(3), 187-197. https://bit.ly/3kIBO5S.

Mandal, M. and Ghosh, U. (2018). Value Addition to Horticultural Solid Waste by Applying It in Biosynthesis of Industrially Important Enzyme: Cellulase. En Ghosh, S.K. (ed.) Utilization and Management of Bioresources: Proceedings of 6th IconSWM 2016. Singapore: Springer Singapore, 279-289.

Mandels, M. and Reese, E. T. (1957). Induction of cellulase in trichoderma viride as influenced by carbon sources and metals. Journal of Bacteriology, 73(2), 269-278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC289787/.

Mitchell, D., Berovič, M. and Krieger, N. (2006). Solid-state fermentation bioreactor fundamentals: tals: introduction and overview. In: Mitchell, D., Berovič, M., Krieger, N. (Eds.), Solid-State State Fermentation Bioreactors: Fundamentals of Design and Operation.', Springer Berlin Heidelberg, Berlin, Heidelberg, 1-12. https://www.springer.com/gp/book/9783540312857.

Mohapatra, S., Padhy, S., Das Mohapatra, P. K. and Thatoi, H. N. (2018). Enhanced reducing sugar production by saccharification of lignocellulosic biomass, Pennisetum species through cellulase from a newly isolated Aspergillus fumigatus. Bioresource Technology, 253, 262-272. https://doi.org/10.1016/j.biortech.2018.01.023.

Mrudula, S. and Murugammal, R. (2011). Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Brazilian Journal of Microbiology, 42, 1119-1127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768773/.

Muiru, E. M. y. D. M. (2008). Identificación de aislados de Actinomicetos seleccionados y caracterización de sus metabolitos antibióticos. 8, 1021-1026.

P, Z., M, H. and J., M. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology advances, 24, 452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003.

Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13(2), 81-84. https://doi.org/10.1016/S1369-703X(02)00121-3.

Paredes, D., Álvarez, M., Silva, M. and Ordonez, S. (2010). Obtención de enzimas celulasas por fermentación sólida de hongos para ser utilizadas en el proceso de obtención de bioalcohol de residuos del cultivo de banano. Revista Tecnológica ESPOL – RTE, 23, 1: 8. https://bit.ly/2Y2iAzE.

Pessoa, D., Finkler, A., Machado, A. L., & Mitchell, D. (2016). Fluid dynamics simulation of a pilot-scale solid-state fermentation bioreactor. Chem. Eng. Trans, 49, 49–54. https://doi.org/10.3303/CET1649009.

Reales, J., Castaño, H., & Zapata, J. (2016). Evaluación de tres métodos de pretratamiento químico sobre la deslignificación de tallos de yuca. Información Tecnológica, 27(3), 11-22. https://bit.ly/39DFKyD.

Riaño, A. M., I, S. A., J.A, G. M., Hernández, M., & Barrero, C. R. (2010). Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos. TUMBAGA, 1(5), 61-91. https://bit.ly/2ZzNFet.

Sánchez Chinchilla, Á. E. (2016). Cinética de secado de la broza de café. [Tesis de Ingeniero, Universidad de Costa Rica]. https://bit.ly/3m1KTpN.

Suesca, A. (2012). Producción de enzimas celulolíticas a partir de cultivos de Trichoderma sp. con biomasa lignocelulósica. [Tesis de Maestría, Universidad Nacional de Colombia. Bogotá]. https://repositorio.unal.edu.co/handle/unal/10652.

Sugimoto, T., Magara, K., & &. H. (2008). Pretreatment for Ethanol Production Using Lignocellulosic Materials. Forestry and Forest Products Research Institute, 12-18.

Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental, 43(4), 777–780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC241917/.

Yarbrough, J. M., Zhang, R., Mittal, A., Vander Wall, T., Bomble, Y. J., Decker, S. R., Himmel, M. E. and Ciesielski, P. N. (2017). Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels. ACS Nano, 11(3), 3101-3109. https://doi.org/10.1021/acsnano.7b00086.

Ye, W., Zhang, W., Liu, T., Tan, G., Li, H. and Huang, Z. (2016). Improvement of Ethanol Production in Saccharomyces cerevisiae by High-Efficient Disruption of the ADH2 Gene Using a Novel Recombinant TALEN Vector', Frontiers in Microbiology, 7, 1067. https://doi.org/10.3389/fmicb.2016.01067

Zhang P, Himmel M, & J., M. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology advances, 24, 452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003.

Znidarsic, P., & Pavko, A. (2001). The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technology and Biotechnology, 39:237-252. https://bit.ly/3EVUmrl.

Published

2021-09-28

How to Cite

Lizarraga Alvarez, E. L., Haro Dominguez, D. M., & Cordova Valles, L. E. (2021). Fermentation of coffee residues with Aspergillus Niger for the production of cellulase. INNOVATION AND PRODUCTIVE TRANSFERENCE JOURNAL, 1(1), e005. https://doi.org/10.54353/ritp.v1i1.e005