Proposal of a process to develop tissue engineering products by bioprinting using FRESH-type support baths
DOI:
https://doi.org/10.54353/ritp.v3i2.e013Keywords:
Tissue-engineered medical products (TEMP), Good Manufacturing Practices (GMP), bioprinting, additive manufacturing, FRESH support bathsAbstract
Introduction: In recent years, 3D bioprinting technology has been developing rapidly and consequently there are publications in various disciplines that contribute to the scientific and technological development of this tool in tissue engineering. The printing technique in FRESH support baths stands out as it allows microscale bioprinting with high shape integrity, avoiding the collapse of low-viscosity and biocompatible structures due to the effects of gravity.
Objective: Synthesizes a series of recommendations generated from the experience in the development of different applications to emphasize Good Manufacturing Practices and quality control with this technique for the manufacture of tissue engineering medical products, which in turn, it will facilitate the transfer of tissue engineering and regenerative medicine technologies to the market.
Methods: This article reviews a series of articles and relevant technical standards to propose a structured search for processes to develop this type of product. Recurrent testing is emphasized to achieve this goal, from pretreatment of materials to post-processing prior to storage.
Results: A proposal has been generated to include Good Manufacturing Practices for tissue engineering medical products that use bioprinting with FRESH-type support baths that can be replicated at different production scales.
Conclusions: The benefits of additive manufacturing using FRESH type support baths can be easily transferred and standardized, the manufacture of medical products by tissue engineering.
Downloads
References
Afghah, F., Altunbek, M., Dikyol, C., & Koc, B. (2020). Preparation and characterization of nanoclay-hydrogel composite support-bath for bioprinting of complex structures. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-61606-x
Allencherry, J., Pradeep, N., Shrivastava, R., Joy, L., Imbriacco, F., & Özel, T. (2022). Investigation of Hydrogel and Gelatin Bath Formulations for Extrusion-Based 3D Bioprinting using Deep Learning. Procedia CIRP, 110(C), 360–365. https://doi.org/10.1016/J.PROCIR.2022.06.064
Antoine, E. E., Vlachos, P. P., & Rylander, M. N. (2014). Review of Collagen I Hydrogels for Bioengineered Tissue Microenvironments: Characterization of Mechanics, Structure, and Transport. Tissue Engineering Part B: Reviews, 20(6), 683–696. https://doi.org/10.1089/TEN.TEB.2014.0086
Bessler, N., Ogiermann, D., Buchholz, M. B., Santel, A., Heidenreich, J., Ahmmed, R., Zaehres, H., & Brand-Saberi, B. (2019). Nydus One Syringe Extruder (NOSE): A Prusa i3 3D printer conversion for bioprinting applications utilizing the FRESH-method. HardwareX, 6, e00069. https://doi.org/10.1016/J.OHX.2019.E00069
Ding, H., & Chang, R. C. (2018a). Printability Study of Bioprinted Tubular Structures Using Liquid Hydrogel Precursors in a Support Bath. Applied Sciences, 8(3), 403. https://doi.org/10.3390/APP8030403
Ding, H., & Chang, R. C. (2018b). Bioprinting of Liquid Hydrogel Precursors in a Support Bath by Analyzing Two Key Features: Cell Distribution and Shape Fidelity. ASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018, 1. https://doi.org/10.1115/MSEC2018-6675
Engberg, A., Stelzl, C., Eriksson, O., O’Callaghan, P., & Kreuger, J. (2021). An open source extrusion bioprinter based on the E3D motion system and tool changer to enable FRESH and multimaterial bioprinting. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-00931-1
Fitzsimmons, R. E., Aquilino, M. S., Quigley, J., Chebotarev, O., Tarlan, F., & Simmons, C. A. (2018). Generating vascular channels within hydrogel constructs using an economical open-source 3D bioprinter and thermoreversible gels. Bioprinting, 9, 7–18. https://doi.org/10.1016/J.BPRINT.2018.02.001
Giuseppe, M. Di, Law, N., Webb, B., A. Macrae, R., Liew, L. J., Sercombe, T. B., Dilley, R. J., & Doyle, B. J. (2018). Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Journal of the Mechanical Behavior of Biomedical Materials, 79, 150–157. https://doi.org/10.1016/J.JMBBM.2017.12.018
Grosskopf, A. K., Truby, R. L., Kim, H., Perazzo, A., Lewis, J. A., & Stone, H. A. (2018). Viscoplastic Matrix Materials for Embedded 3D Printing. ACS Applied Materials and Interfaces, 10(27), 23353–23361. https://doi.org/10.1021/ACSAMI.7B19818
Guo, Z., Dong, L., Xia, J., Mi, S., & Sun, W. (2021). 3D Printing Unique Nanoclay-Incorporated Double-Network Hydrogels for Construction of Complex Tissue Engineering Scaffolds. Advanced Healthcare Materials, 10(11), 2100036. https://doi.org/10.1002/ADHM.202100036
Honiball, J. R., Pepper, M. S., & Prinsloo, E. (2021). Step-by-step assembly and testing of a low-cost bioprinting solution for research and educational purposes. MethodsX, 8, 101186. https://doi.org/10.1016/J.MEX.2020.101186
Hunsberger, J., Harrysson, O., Shirwaiker, R., Starly, B., Wysk, R., Cohen, P., Allickson, J., Yoo, J., & Atala, A. (2015). Manufacturing Road Map for Tissue Engineering and Regenerative Medicine Technologies. Stem Cells Translational Medicine, 4(2), 130–135. https://doi.org/10.5966/SCTM.2014-0254
Jalandhra, G. K., Molley, T. G., Hung, T. tyng, Roohani, I., & Kilian, K. A. (2022). In situ formation of osteochondral interfaces through “bone-ink” printing in tailored microgel suspensions. Acta Biomaterialia, 156, 75-87. https://doi.org/10.1016/J.ACTBIO.2022.08.052
Jeon, O., Lee, Y. B., Hinton, T. J., Feinberg, A. W., & Alsberg, E. (2019). Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Materials Today Chemistry, 12, 61–70. https://doi.org/10.1016/J.MTCHEM.2018.11.009
Jin, Y., Chai, W., & Huang, Y. (2017). Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication. Materials Science and Engineering: C, 80, 313–325. https://doi.org/10.1016/J.MSEC.2017.05.144
Leblanc, K. J., Niemi, S. R., Bennett, A. I., Harris, K. L., Schulze, K. D., Sawyer, W. G., Taylor, C., & Angelini, T. E. (2016). Stability of High Speed 3D Printing in Liquid-Like Solids. ACS Biomaterials Science and Engineering, 2(10), 1796–1799. https://doi.org/10.1021/ACSBIOMATERIALS.6B00184
Lewicki, J., Bergman, J., Kerins, C., & Hermanson, O. (2019). Optimization of 3D bioprinting of human neuroblastoma cells using sodium alginate hydrogel. Bioprinting, 16, e00053. https://doi.org/10.1016/J.BPRINT.2019.E00053
Li, Y. C. E., Jodat, Y. A., Samanipour, R., Zorzi, G., Zhu, K., Hirano, M., Chang, K., Arnaout, A., Hassan, S., Matharu, N., Khademhosseini, A., Hoorfar, M., & Shin, S. R. (2020). Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs. Biofabrication, 13(1), 015014. https://doi.org/10.1088/1758-5090/ABC1BE
Machour, M., Szklanny, A. A., & Levenberg, S. (2022). Fabrication of Engineered Vascular Flaps Using 3D Printing Technologies. Journal of Visualized Experiments : JoVE, 2022(183), e63920. https://doi.org/10.3791/63920
Mirdamadi, E., Tashman, J. W., Shiwarski, D. J., Palchesko, R. N., & Feinberg, A. W. (2020). FRESH 3D Bioprinting a Full-Size Model of the Human Heart. ACS Biomaterials Science and Engineering, 6(11), 6453–6459. https://doi.org/10.1021/ACSBIOMATERIALS.0C01133
Moxon, S. R., Cooke, M. E., Cox, S. C., Snow, M., Jeys, L., Jones, S. W., Smith, A. M., Grover, L. M., Moxon, S. R., Smith, A. M., Cooke, M. E., Cox, S. C., Snow, M., Grover, L. M., Jones, S. W., & Jeys, L. (2017). Suspended Manufacture of Biological Structures. Advanced Materials, 29(13), 1605594. https://doi.org/10.1002/ADMA.201605594
Murphy, C. M., & O’Brien, F. J. (2010). Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion & Migration, 4(3), 377–381. https://doi.org/10.4161/CAM.4.3.11747
Navara, A. M., Kim, Y. S., Xu, Y., Crafton, C. L., Diba, M., Guo, J. L., & Mikos, A. G. (2022). A dual-gelling poly(N-isopropylacrylamide)-based ink and thermoreversible poloxamer support bath for high-resolution bioprinting. Bioactive Materials, 14, 302–312. https://doi.org/10.1016/J.BIOACTMAT.2021.11.016
Ning, L., Mehta, R., Cao, C., Theus, A., Tomov, M., Zhu, N., Weeks, E. R., Bauser-Heaton, H., & Serpooshan, V. (2020). Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. ACS Applied Materials and Interfaces, 12(40), 44563–44577. https://doi.org/10.1021/ACSAMI.0C15078
O’Brien, F. J., Harley, B. A., Yannas, I. V., & Gibson, L. J. (2005). The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 26(4), 433–441. https://doi.org/10.1016/j.biomaterials.2004.02.052
O’Bryan, C. S., Bhattacharjee, T., Hart, S., Kabb, C. P., Schulze, K. D., Chilakala, I., Sumerlin, B. S., Sawyer, W. G., & Angelini, T. E. (2017). Self-assembled micro-organogels for 3D printing silicone structures. Science Advances, 3(5). https://doi.org/10.1126/SCIADV.1602800
Polley, C., Kussauer, S., David, R., Barkow, P., Mau, R., & Seitz, H. (2020). Printing of vessels for small functional tissues-A preliminary study. Current Directions in Biomedical Engineering, 6(3), 469–472. https://doi.org/10.1515/CDBME-2020-3121
Pusch, K., Hinton, T. J., & Feinberg, A. W. (2018). Large volume syringe pump extruder for desktop 3D printers. HardwareX, 3, 49–61. https://doi.org/10.1016/J.OHX.2018.02.001
Rajput, S., Deo, K. A., Mathur, T., Lokhande, G., Singh, K. A., Sun, Y., Alge, D. L., Jain, A., Sarkar, T. R., & Gaharwar, A. K. (2022). 2D Nanosilicate for additive manufacturing: Rheological modifier, sacrificial ink and support bath. Bioprinting, 25, e00187. https://doi.org/10.1016/J.BPRINT.2021.E00187
Rodriguez, M. J., Dixon, T. A., Cohen, E., Huang, W., Omenetto, F. G., & Kaplan, D. L. (2018). 3D freeform printing of silk fibroin. Acta Biomaterialia, 71, 379–387. https://doi.org/10.1016/J.ACTBIO.2018.02.035
Shah, P. P., Shah, H. B., Maniar, K. K., & Özel, T. (2020). Extrusion-based 3D bioprinting of alginate-based tissue constructs. Procedia CIRP, 95, 143–148. https://doi.org/10.1016/J.PROCIR.2020.06.007
Somasekharan, L. T., Raju, R., Kumar, S., Geevarghese, R., Nair, R. P., Kasoju, N., & Bhatt, A. (2021). Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. International Journal of Biological Macromolecules, 189, 398–409. https://doi.org/10.1016/J.IJBIOMAC.2021.08.114
Song, K., Ren, B., Zhai, Y., -, al, Zuo, Q., Lu, J., Hong, A., Del Monte, G., Camerin, F., Flégeau, K., Puiggali-Jou, A., & Zenobi-Wong, M. (2022). Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication, 14(3), 034105. https://doi.org/10.1088/1758-5090/AC6B58
Townsend, J. M., Beck, E. C., Gehrke, S. H., Berkland, C. J., & Detamore, M. S. (2019). Flow behavior prior to crosslinking: The need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Progress in Polymer Science, 91, 126–140. https://doi.org/10.1016/J.PROGPOLYMSCI.2019.01.003
Varian, M., & Whulanza, Y. (2021). Hydrogel-based bioprinter design with support bath as printing environment. AIP Conference Proceedings, 2344(1), 020020. https://doi.org/10.1063/5.0047166
Wu, X., Chen, K., Chai, Q., Liu, S., Feng, C., Xu, L., & Zhang, D. (2022). Freestanding vascular scaffolds engineered by direct 3D printing with Gt-Alg-MMT bioinks. Biomaterials Advances, 133, 112658. https://doi.org/10.1016/J.MSEC.2022.112658
Yang, B., Liu, T., Gao, G., Zhang, X., & Wu, B. (2022). Fabrication of 3D GelMA Scaffolds Using Agarose Microgel Embedded Printing. Micromachines, 13(3), 469. https://doi.org/10.3390/MI13030469
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Lizardo Torres-Ayala, Fanny Lys Casado Peña

This work is licensed under a Creative Commons Attribution 4.0 International License.
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0 Internacional (CC BY 4.0).
La "Revista de Innovación y Transferencia Productiva" del Instituto Tecnológico de la Producción, Lima, Perú se distribuye bajo una Licencia Creative Commons Reconocimiento 4.0 Internacional (CC BY 4.0).


