Artificial neural networks for the treatment of tanneries effluents

Authors

  • Manuel Omar García La Barrera Inter-Company S.R.L., Trujillo, Perú
  • Brander Jean Carlos Vega Gonzales Inter-Company S.R.L., Trujillo, Perú
  • Juan Carlos Mariños Legendre Instituto Tecnológico de la Producción, Trujillo, Perú
  • Bertha Beatriz Anhuaman Namoc Instituto Tecnológico de la Producción, Trujillo, Perú
  • Maricielo Campos Gutiérrez Instituto Tecnológico de la Producción, Trujillo, Perú https://orcid.org/0000-0002-0854-2774
  • Miguel Elías Pinglo Bazán Instituto Tecnológico de la Producción, Trujillo, Perú https://orcid.org/0000-0001-7130-0156

DOI:

https://doi.org/10.54353/ritp.v2i2.e002

Keywords:

artificial neruonal network, effluent treatment, pilot system, biochemical oxygen demand, chemical oxygen demand, total suspended solids

Abstract

One of the main problems that concerns companies dedicated to leather tanning and dressing lies in the high contaminant concentrations of the effluent that they release into the sewage network, which exceed the maximum admissible values ​​(VMA) established in DS 010-2019 -VIVIENDA.In line with this reality, an alternative is presented to reduce the contaminant load of Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD) and Total Suspended Solids (TSS) present in tannery waters through the use of a effluent treatment system that is controlled by an artificial neural network that automatically determines the dosing of inputs for the treatment of effluents in tanneries and depending on the combination of effluents from the tannery processes, the chemical inputs are dosed.The methodology used consists of removal of sedimentable organic load through a grease trap and sedimentation pond, oxidation of sulfur organic matter, pH regulation, coagulation and flocculation according to the dosage indicated in the neural network and an aeration system. With a sample of 5 m3 / day, it was possible to reduce the parameters by 70%, obtaining a concentration of BOD5, COD and TSS around 211.3 O2 mg / L, 790 mg / L and 109.7 mg / L respectively; meanwhile, 0.007 mg / L of hexavalent chromium, 0.005 mg / L of total cyanide, 1.9 mg / L of settleable solids, 6.5 mg / L of oils and fats and 740.9 mg / L of sulfates were obtained; all under the validated treatment system unlike conventional methodologies that only treat the effluents for each process separately.

Downloads

Download data is not yet available.

References

Aguilar, L. (2019). Análisis comparativo en la implementación de la red neuronal backpropagation usando el método de componentes principales y el método clásico. [Tesis de Doctorado, Universidad Nacional de Piura, Perú]. https://repositorio.unp.edu.pe/handle/UNP/1583

Barajas-Garzón, Claudia; León-Luque, Andrea (2016). Determinación de la dosis óptima de sulfato de aluminio (Al2 (SO4)3 18H2O) en el proceso de coagulación – floculación para el tratamiento de agua potable por medio del uso de una red neuronal artificial. [Tesis de Ingeniería, Universidad Santo Tomás, Bogotá, Colombia]. https://hdl.handle.net/11634/2916

Fúquene, Diana; Yate, Andrea; (2018). Ensayo de jarras para el control del proceso de coagulación en el tratamiento de aguas residuales industriales. Working Papers ECAPMA, (1), 1-7. https://doi.org/10.22490/ECAPMA.2771

González, L. & García, J. (2020). Elaboración de un modelo neuronal artificial para la estimación de turbiedad y proposición de dosificaciones en el tratamiento de aguas residuales de la industria avícola. Informador Técnico 84(1) Enero - Junio 2020: 3-17. Recuperado de http://revistas.sena.edu.co/index.php/inf_tec/article/view/1636.

J.J. Rubio, J.A. Hernández-Aguilar, F.J. Ávila-Camacho, J.M. Stein-Carrillo, A. Meléndez-Ramírez (2016) Sistema sensor para el monitoreo ambiental basado en redes Neuronales. Ingeniería Investigación y Tecnología, XVII (2) (abril-junio 2016), pp. 211-222. https://bit.ly/3uYpT9K

León-Duque, A. J.; Barajas, C. L.; Peña-Guzmán, C. A.; (2016). Determination of the Optimal Dosage of Aluminum Sulfate in the Coagulation-Flocculation process using an Artificial Neural Network. International Journal of Environment Science and Development, 7(5), 346-350. https://doi.org/10.7763/IJESD.2016.V7.797

Peña, A. (2016). Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable – Huancayo. Repositorio Universidad Agraria de La Molina. https://bit.ly/3uUWTPU

Shahid, M. et al (2017). Coagulation Flocculation Based Biological Treatment of Tannery Industry Wastewater using Potash Alum and Drewfloc [Tratamiento biológico basado en coagulación y floculación de aguas residuales de la industria de curtidos utilizando potasio, aluminio y Drewfloc]. European Journal of Advances in Engineering and Technology, 2017,4 (1):71-75. http://ejaet.com/coagulation-flocculation-based-biological-treatment-of-tannery-industry-wastewater-using-potash-alum-and-drewfloc/.

Published

2022-02-17 — Updated on 2022-02-17

How to Cite

García La Barrera, M. O. ., Vega Gonzales, B. J. C. ., Mariños Legendre, J. C., Anhuaman Namoc, B. B. ., Campos Gutiérrez , M. ., & Pinglo Bazán , M. E. . (2022). Artificial neural networks for the treatment of tanneries effluents. INNOVATION AND PRODUCTIVE TRANSFERENCE JOURNAL, 2(2), e002. https://doi.org/10.54353/ritp.v2i2.e002

Most read articles by the same author(s)